Evaluation of 3M EmporeTM Rad Disks for Radium in Water S. C. Scarpitta and P. W. Miller. U.S. Department of Energy, Environmental Measurements Laboratory, 201 Varick Street, Fifth Floor, New York, NY 10014-4811. ## **Abstract** EmporeTM Radium Disks, manufactured by the 3M Corporation, have been evaluated for use in EML's Quality Assurance Program (OAP) for the rapid determination of Radium in Water. These 47 mm diameter by 500 μ m thick membrane disks are impregnated with a crown ether that selectively extracts β -emitting ²²⁵Ra ($t_{1/2} = 14.8$ dy) or ²²⁸Ra ($t_{1/2} = 6.7$ yr) and α -emitting ²²³Ra ($t_{1/2} = 11.2 \text{ dy}$), ²²⁴Ra ($t_{1/2} = 3.6 \text{ dy}$) or ²²⁶Ra ($t_{1/2} = 1622 \text{ yr}$) from water. Typically, the Ra bearing solution is loaded onto the disk from $2N \text{ HNO}_3$ and eluted with 0.25M (basic)ethylenediamine tetraacetic acid (EDTA). Using 10-20 mL amounts of non-acidified matrix free samples, we pre-conditioned each disk with 2N HNO₃ and individually measured the retention and elution characteristics of 20 isotopes that are constituents of EML's QAP samples. We utilized either (1) Liquid Scintillation Analysis (LSA), (2) NaI(Tl) gamma counting or (3) Solid State Alpha Spectrometry to make our measurements, rather than 222Rn emanation, which is specific only for ²²⁶Ra. We found that the disks could be counted directly (for ²²⁶Ra) using a low background gas-proportional α/β counter, with 10% α -counting efficiency, or a LSA, with 99% α -counting efficiency. The 6 α -emitting actinides tested were ²³⁰Th, nat U, ²⁴²Pu, ²⁴³Am, ²³⁷Np and ²⁴⁴Cm. We selected several β/γ -emitting Group I (³H, ⁴⁰K, ¹³⁷Cs) and Group II (⁴⁵Ca, ⁹⁰Sr/Y. ¹³³Ba) elements as potential interferents when measuring Radium by LSA. transition elements (55 Fe, 54 Mn, 106 Ru/Rh) as well as 226 Ra and 2 of its β -emitting progeny, 210 Pb and ²¹⁰Bi were individually tested. We found that ²¹⁰Po and ²¹⁰Bi, were not retained by the disk while > 95% of added ²²⁶Ra was recovered from samples that we tested. The only other divalent elements that eluted with EDTA were Pb (90% eluted), Sr (85%) and Ba (20%). For three QAP water samples spiked with 4 dpm (0.6 Bq) of ²²⁶Ra, the found to added ratio was 0.90 ± 0.14. The 20 mL QAP samples (acidified with 1N HCl) contained ³H (300 dpm). ⁵⁵Fe (99 dpm), 90Sr/Y (1.8 dpm) 238Pu (2.2 dpm), 241Am (1 dpm), 54Mn (51 dpm), 60Co (42 dpm) and ¹³⁷Cs (54 dpm). For rapid screening, good results were obtained following a 15 min LS count of either the unstripped 3M disk or EDTA fraction. Samples containing < 2 dpm (0.03 Bq) were below the LLD of our LS counter and required a direct α -count of 226 Ra. This was accomplished by microprecipitating Radium (as Ra/BaSO₄) at pH 4-5 from the EDTA fraction, following Sill's method. A first attempt to measure Radium in New York City tap water was unsuccessful because of the presence of gram amounts of soluble NO3 salts that presumably interfered with ²²⁶Ra extraction. Since the Radium concentration in NYC water is extremely low (0.4 mBq L⁻¹), we evaporated 50 L to 100 mL. Prior to pre-filtering with glass-fiber pads, we wet ashed with concentrated HF, HCl and finally HNO3. Following an 18 h count, we were unable to detect a ²²⁶Ra α-peak in the EDTA strip fractions of 4 pre-filtered and concentrated NYC water samples, one of which was internally spiked with 3 dpm of 226Ra. In each case, we accounted for 86-95% of γ -emitting ¹³³Ba that was added as a yield tracer just prior to microprecipitation. We were, however, able to recover 95% of 6 dpm 226Ra added to 2-5 L of NYC water samples measured by either LSA (without 133Ba) or alpha spectrometry.